Digital circuits
For all digital circuits in the computer, the building-blocks are gates (NOT Bill !!).

Gates are constructed using transistors, figure 3.1

[image: image8.png]Logical unit Ccarryin
|

NvA—

Outpur

A
ENA-

B
ENE

A
S
!

F

Decoder
Carry out

fig.3.1 (a) An inverter. (b) A NAND gate. (c) A NOR gate

You can describe the function of a gate by using a truth-table :
[image: image2.png]OR

©

«

©

()

Iy

figure.3.2 Symbols and funktion of the five basic gate-types
To circuits are calculating the same function (they are equivalent), if the have the same truth-table :

[image: image3.png]A8+ 0)

Brc

ac

B+C[MB+ O

a

c

c [a8 [ac [a8+ ac

)

@

Fig 3.5. Two equivalent circuits.
Designers uses Boolean algebra in order to reduce the number af gates in a circuit , making it cheaper to produce, faster and with a lower power-consumption.

Decoders.
Using 3 bit's we can write the numbers 0..7 (000..111). An extremely used circuit is the decoder. With the following 3-to-8 decoder we can set exactly one line of 8 to 1 (all others to 0) using only 3 control-signals A,B and C:

[image: image1.png]oo

Vou

Emiter

#Vec

+Vee

v
Vou

v v v

b) ©

Figure 3-13. A 3 to 8 decoder.

The decoder with input A=0, B=0 og C=1 (001). As you can see, only one of the and-gates has all input-lines with value 1.

[image: image4.png]

Adder's
Take a look on a half-adder :

[image: image5.png]Exclusive OR gate

0 Sunfcam]
o R &)] s
- -
o o
o
K

Cany

Truth-table for a XOR-gate:

	A
	B
	A XOR B

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

As you can see from the truth-Table the calculation of sum and carry are correct. Normally it's not very interesting only to add two 1-bit values, so let's expand to a

full-adder, in order to handle carry-in:

[image: image6.png]Carryin

aum

carryout

k)

(a)

By connecting a number of full-adders we are now able to add numbers of any bit-width. For adding A and B , start with A0 and B0 (carry-in=0). A generated carry will be used as carry-in for the adding of A1 and B1 – bit's, etc.
Arithmetic Logical Unit (ALU).

Connecting gates as shown on the next page, gives us a 1-bit ALU. Now connect 32 of these and we have a full 32-bit ALU, able to operate on two 32-bit values A and B.
To the left on the figure you find the indata-signals (A and B), and the control-signals (F0, F1, INVA, ENA og ENB).

ENA : this signal controls whether the A-value are loaded. The A-bit and the ENA-signal are connected to an AND-gate, so the output is 0, if ENA is 0 and A if ENA is 1.

INVA: Connected to a XOR-gate, where the other input is A. If INVA is sett (=1) the A-signal are inverted (0->1 and 1->0).

ENB : See ENA.

The logical unit calculates 3 logical functions A AND B, A OR B and NOT B.

AT the same time the full-adder calculates the sum of A and B (and the carry-in).

SO WHAT ON EARTH IS GOING TO BE THE OUTPUT ????

This is controlled by the F0 and F1-signals, connected to a 2-4 decoder.
[image: image7.png]] =

o1
A o2
03
£ 0
8
c o5
T
0s

o

	F0
	F1
	RESULT

	0
	0
	A AND B

	0
	1
	A OR B

	1
	0
	NOT B

	1
	1
	A + B (sum)

