Exercises JVM methodcalls, objects and jdk.doc
Henrik Hauge / Nir
Side 2
24-10-2011

1. Translation running and decompiling in JDK (Java Development Kit)

· Locate the Java compiler
ex: programmer\oracle\jdevXX\jdk\bin
· Write files using notepad

ex: Test.java

· Use the batfiles for compiling, running and disassembling
2. (Methodcall)

Translate code containing 2 methods, (one calling the other) .

Disassemble and find the JVM-code, responsible for the method-call.

3. (Objectinstantiation, attributes)
a)

Translate some code, instantiating a small class.

Disassemble and examine the JVM-code, responsible for the object-instantiation. Try to localise the JVM-code for the constructors. I both cases the INVOKESPECIAL instruction are used.

b)
Expand, so the code accesses an attribute in the newly created object.

Disassemble and locate the JVM-code accessing the attribute (ALOAD followed by GETFIELD)

4.(Memory for the Java Stack)
Show, that the amount of stack-space is limited.

Hint: run a program, where a method is calling itself (recursion). What happens?

Variation 1 (Count how many stack-frames there are room for.

Variation 2 (Expand the frame-size – any changes?

5. (Memory for Heap)
Show, that the amount of heap-space is limited.

Hint: run a program, that instantiates ”an indefinite number” of objects. What happens?

Variation 1 (Store references to the created objects in an ArrayList. What happens? Try to axplain! Variation 2 (Count, how many objects there are room for.
Variation 3 (Increase the Object-size – dose that change anything?

6. (Memory)
Are the Stack and the heap sharing the same memory area, or are each allocated its own area?

[image: image1]
In stead of having separate areas (left figure) they might share a common area of memory, in such a way that the stack grows from one end and the heap from the other (right figure).

Plan and run an experiment in order to show, which principle are used on your computer.
7. (Classloader)

Try to visualise the loading of class-files through the following experiment.

a) Translate and run the following program.

public class TestClassloader

{

public static void main(String[] a)

{

System.out.println("Now we instantiate B");

B b = new B();

System.out.println("Now we instantiate C");

C c = new C();

}

}

class B

{

public B()

{

System.out.println("Here is B");

}

}

class C

{

public C()

{

System.out.println("Here is C ");

 }

}

b) Delete the file C.class and run again

- What kind of error?

- When are C loaded?

c) Translate again and use a hex-editor to make a random change in the file C.class.

 Run the code

- What kind of error?
8. Compiling.
Plan end execute a number of experiments in order to visualise the degree of optimisation done by the compiler (Constant-folding, jump over jumps, ’Dead’-code elimination, load after store elimination a.s.o.)

Heap

Stak

Heap

Stak

