JVM overview + instructionset
[image: image1]NIR 2009

5

 Before a program, written in JAVA, can be executed on a computer, it is necessary first to compile (translate) the source-code to an equivalent program. The ’new’ program must be in a language, that the hardware can understand.
 In order to run JAVA on any platform, it was decided to compile the java-code to byte-code – a language for a fictive computer: JAVA Virtual Machine (JVM).

 You can build a CPU with byte-code as machine-language. But why do that, when most of us already have a computer with an Intel-processor (or equivalent).

 In stead we choose to simulate our JVM. This can be done with a program, that takes our byte-code as input and then issues equivalent instructions understandable by the underlying hardware.
 How this is done on the different platforms is completely up to the programmer of the JVM-program for the platform, as long as it implements the necessary interfaces against the byte-code.

 The generated byte-code is completely independent of the hardware and the operating system, responsible for running processes at the platform. Normally the generated byte-code is stored in a file with a well-defined format, a class-file.

Run Time Data areas.

JVM does not see the memory as a single array of bytes, but splits it in a number of runtime data-areas, used during program-execution.

PC–register.
At a specific time the JVM will be running the code in some method (current method). In order to keep track on what’s going on, the JVM has a PC-register, which holds the address of the instruction under execution. PC stands for Program Counter, a kind of counter, which when it’s updated holds the address for the next instruction.

Class Area.

Storage area for classes, loaded by the system.

This is the part of the memory, where the instructions are located – the method area. You may think of this area as a byte-array.
Metode-området deles af alle aktive JVM-tråde.
Runtime Constant Pool.
 Runtime Constant Pool exists in one copy for each class/interface.
I this area you’ll find information concerning constants,
names, types, strings and method-references.
Constant-pool is created by the class-loader and can not change

after load.
JVM-stack.

 Each JVM-thread (process) has it’s own private JVM-stack . On the stack we place the frames (see below), which is used for local variables and parameters. Furthermore the stack is used for calculations. The stack is also a central player in connection with method-calls.
 The JVM-specification allows the stack to have a fixed size or to

shrink/expand dynamically.

 With a fixed stack we may run into a StackOverflowError.

 With dynamic stacks you may encounter an OutOfMemoryError.

Heap.

A third area is the Heap. This is a shared area used to store information concerning class-instances and arrays. So Objects are stored on the heap. Space is allocated through the ‘new’-call. Deallocation are handled by the garbage collectoren.
JVM instruction-set
A JVM-instruction has a one-byte opcode, specifying the operation to be done and 0 or more operands, to be used in the operation.

Many JVM-instructions only specify an opcode, making the program-code extremely compact.
If we ignore exceptions, we can describe the central functionality of the JVM like this:
do {

fetch an opcode;

if (opcode_demands_operand’s)

load operand’s;

execute the opcode;

} while (more to do);

Some instructions and their opcodes:

Load and Store instructions.

All calculations are done on the stack. If two local-variables are to be added, they first must be placed at the stack. For this purpose there is a number af ‘LOAD’-instructions. For integers we have the instructions iload and iload_<n>.

The format for iload is :

[image: image2.png]Hex Mnemonic Meaning
0x10 | BIPUSH byte Push byte onto stack
0x59 | DUP Copy top word on stack and push onto stack
0xA7 | GOTO offset Unconditional branch
0x60 | IADD Pop two words from stack; push their sum
OX7E | IAND Pop two words from stack; push Boolean AND
0x99 IFEQ offset Pop word from stack and branch if it is zero
0x9B | IFLT offset Pop word from stack and branch if it is less than zero
Ox9F | IF. ICMPEQ offset Pop two words from stack; branch if equal
0x84 | IINC varnum const Add a constant to a local variable
0x15 ILOAD varnum Push local variable onto stack
0xB6 | INVOKEVIRTUAL disp | Invoke a method
0x80 | IOR Pop two words from stack; push Boolean OR
O0xAC | IRETURN Return from method with integer value
0x36 | ISTORE varnum Pop word from stack and store in local variable
0x64 | ISUB Pop two words from stack; push their difference
0x13 | LDC_W index Push constant from constant pool onto stack
0x00 | NOP Do nothing
0x57 | POP Delete word on top of stack

| Ox5F | SWAP Swap the two top words on the stack

| OxC4 | WIDE Prefix instruction; next instruction has a 16-bit index

Figure 4-11. The IJVM instruction set. The operands byte, const, and varnum
are | byte. The operands disp, index, and offset are 2 bytes.

Opcode for iload is 2110 (0x15)

Index is an unsigned byte, stating the position of the local variable in the current frame.

The value of the variable are placed (push’es) on the stack.

iload_<n> instruction exists in 4 flavours: iload_0, iload_1, iload_2 and iload_3.
The effect is simply to push local variable n to the stack.

Opcoderne for iload_<n> is 2610 (0x1A), 2710 (0x1B), 2810 (0x1C) and 2910 (0x1D).

Format for istore is:

Opcode for istore is 5410 (0x36)

Index has the same meaning as described for iload. The top element are removed from the stack and stored in local[index].

As for iload, we have special instructions for the most frequent used stores: istore_<n>, where n may take the values 0..3.

Opcoderne for istore_<n> is 5910 (0x3B), 6010 (0x3C), 6110 (0x3D) and 6210 (0x3E) .

Arithmetic instructions.

Let’s stick to integers.
Addition: iadd
Subtraction: isub
Multiplication: imul
Division: idiv
Remainder (modulus) : irem
Signshift : ineg
Shift-operations : ishl, ishr and iushr
Bitvise operations : ior, iand and ixor

iadd ,
9610 (0x60)
	
	 →
	

	Val1
	
	

	Val2
	
	Val1+Val2

	-
	
	-

	-
	
	-

isub ,
10010 (0x64)
	
	 →
	

	Val1
	
	

	Val2
	
	Val2-Val1

	-
	
	-

	-
	
	-

imul ,
10410 (0x68)
	
	 →
	

	Val1
	
	

	Val2
	
	Val1*Val2

	-
	
	-

	-
	
	-

idiv ,
10810 (0x6c)
	
	 →
	

	Val1
	
	

	Val2
	
	Val2 / Val1

	-
	
	-

	-
	
	-

irem ,
11210 (0x70)
	
	 →
	

	Val1
	
	

	Val2
	
	Val2 %Val1

	-
	
	-

	-
	
	-

	
	 →
	

	Val1
	
	-Val1

	Val2
	
	Val2

	-
	
	-

	-
	
	-

ior ,
12810 (0x80)
	
	 →
	

	Val1
	
	

	Val2
	
	(Val2 | Val1)

	-
	
	-

	-
	
	-

iand ,
12610 (0x7e)
	
	 →
	

	Val1
	
	

	Val2
	
	(Val2 & Val1)

	-
	
	-

	-
	
	-

ixor ,
12610 (0x7e)
	
	 →
	

	Val1
	
	

	Val2
	
	(Val2 ^ Val1)

	-
	
	-

	-
	
	-

Stack-management-instructions.

A number of instructions manipulates the operand-stack :
pop, pop2, dup, dup2, dup_x1, dup2_x1, dup_x2, dup2_x2 and swap.

pop ,
8710 (0x57)
Does: pop’s top stack-element.
	
	 →
	

	Val1
	
	

	Val2
	
	Val2

	-
	
	-

	-
	
	-

pop2 ,
8810 (0x58)
Does: removes 2 top-elements from stack
	
	 →
	

	Val1
	
	

	Val2
	
	

	Val3
	
	Val3

	-
	
	-

dup ,
8910 (0x59)
Does: duplicates top stack-element.
.

	
	 →
	

	
	
	Val1

	Val1
	
	Val1

	-
	
	-

	-
	
	-

dup2 ,
9210 (0x5c)

Does: duplicates two top stack-elements.
	
	 →
	Val1

	
	
	Val2

	Val1
	
	Val1

	Val2
	
	Val2

	-
	
	-

swap ,
9510 (0x5f)
Does: switch the order of the two top stack-elements.
	
	 →
	

	Val1
	
	Val2

	Val2
	
	Val1

	-
	
	-

	-
	
	-

Others.

Only a few instructions are described.
The first operates directly on a local-variable (no load to stack needed!)
iinc
13210
(0x84)
Operation : increments a local-variable with the value of constant.

Format :
	iinc

	index

	constant

Description: index is a unsigned byte (must be a legal index in current frame). Constant is a signed byte. The local variable at index-position must be an int.

bipush
1610
(0x10)
Operation : Push byte to stack.

Format :
	bipush

	byte

Description: byte is an immediate value and may take the values
-128..127.
iconst_<i>
Operation : Push int-constant to stak.

Format :
	iconst_<i>

flavours :
iconst_m1
210 (0x02)

iconst_0
310 (0x03)

iconst_1
410 (0x04)

iconst_2
510 (0x05)

iconst_3
610 (0x06)

iconst_4
710 (0x07)

iconst_5
810 (0x08)
Description: Push int constant <i> (-1, 0, 1, 2, 3, 4 or 5) to stack.
(Equivalent to bipush i, but more compact).

Method

area

iload

index

istore

index

Runtime Constant Pool

Class area

 (From Tanenbaum: Structured Computer Organization)

PC

frame

JVM Stak

frame

current frame

