 INTRODUCTION

A digital computer is a machine that can solve problems for people by carrying out instructions given to it. A sequence of instructions describing how to perform a certain task is called a program. The electronic circuits of each computer can recognize and directly execute a limited set of simple instructions into which all its programs must be converted before they can be executed. These basic instructions are rarely much more complicated than

Add 2 numbers.

Check a number to see if it is zero.

Copy a piece of data from one part of the computer's memory to another.

Together, a computer's primitive instructions form a language in which it is possible for people to communicate with the computer. Such a language is called a machine language. The people designing a new computer must decide what instructions to include in its machine language. Usually, they try to make the primitive instructions as simple as possible, consistent with the computer's intended use and performance requirements, in order to reduce the complexity and cost of the electronics needed. Because most machine languages are so simple, it is difficult and tedious for people to use them.

This simple observation has, over the course of time, led to a way of structuring computers as a series of abstractions, each abstraction building on the one below it. In this way, the complexity can be mastered and computer systems can be designed in a systematic, organized way. We call this approach structured computer organization and have named the book after it. In the next section we will describe what we mean by this term. After that we will look at some historical developments, the state‑of‑the‑art, and some important examples.

1.1 STRUCTURED COMPUTER ORGANIZATION

As mentioned above, there is a large gap between what is convenient for people and what is convenient for computers. People want to do X, but computers can only do Y. This leads to a problem. The goal of this book is to explain how this problem can be solved.

1.1.1 Languages, Levels, and Virtual Machines

The problem can be attacked in two ways: both involve designing a new set of instructions that is more convenient for people to use than the set of built‑in machine instructions. Taken together, these new instructions also form a language, which we will call Ll, just as the built‑in machine instructions form a language, which we will call L0, The two approaches differ in the way programs written in Ll are executed by the computer, which, after all, can only execute programs written in its machine language, L0.

One method of executing a program written in Ll is first to replace each instruction in it by an equivalent sequence of instructions in L0. The resulting program consists entirely of LO instructions. The computer then executes the new L0 program instead of the old L1 program. This technique is called translation.

 The other technique is to write a program in L0 that takes programs in L1 as input data and carries them out by examining each instruction in turn and executing the equivalent sequence of L0 instructions directly. This technique does not require first generating a new program in L0. It is called interpretation and the program that carries it out is called an interpreter.

Translation and interpretation are similar. In both methods instructions in Ll are ultimately carried out by executing equivalent sequences of instructions in L0. The difference is that, in translation, the entire L1 program is first converted to an L0 program, the L1 program is thrown away, and then the new L0 program is loaded into the computer's memory and executed. During execution, it is the newly generated L0 program that is running and in control of the computer

In interpretation, after each L1 instruction is examined and decoded, it is carried out immediately. No translated program is generated. Here, it is the interpreter that is in control of the computer. To it, the Ll program is just data. Both methods, and increasingly, a combination of the two, are widely used.

Rather than thinking in terms of translation or interpretation, it is often simpler to imagine the existence of a hypothetical computer or virtual machine whose machine language is L1. Let us call this virtual machine M1 (and let us call the virtual machine corresponding to L0, M0). If such a machine could be constructed cheaply enough, there would be no need for having L0 or a machine that executed programs in L0 at all. People could simply write their programs in L1 and have the computer execute them directly. Even if the virtual machine whose language is L1 is too expensive or complicated to construct out of electronic circuits, people can still write programs for it. These programs can either be interpreted or translated by a program written in L0 that itself can be directly executed by the existing computer. In other words, people can write programs for virtual machines, just as though they really existed.

To make translation or interpretation practical, the languages L0 and Ll must not be "too" different. This constraint often means that L1, although better than L0, will still be far from ideal for most applications. This result is perhaps discouraging in light of the original purpose for creating Ll‑ relieving the programmer of the burden of having to express algorithms in a language more suited to machines than people. However, the situation is not hopeless.

The obvious approach is to invent still another set of instructions that is more people‑oriented and less machine‑oriented than Ll. This third set also forms a language, which we will call L2 (and with virtual machine M2). People can write programs in L2 just as though a virtual machine with L2 as its machine language really existed. Such programs can either be translated to L1 or executed by an interpreter written in Ll.

The invention of a whole series of languages, each one more convenient than its predecessors, can go on indefinitely until a suitable one is finally achieved. Each language uses its predecessor as a basis, so we may view a computer using this technique as a series of layers or levels, one on top of another, as shown in Fig. 1‑1. The bottommost language or level is the simplest and the highest language or level is the most sophisticated.

There is an important relation between a language and a virtual machine. Each machine has some machine language, consisting of all the instructions that the machine can execute. In effect, a machine defines a language. Similarly, a language defines a machine‑namely, the machine that can execute all programs written in the language. Of course, the machine defined by a certain language may be enormously complicated and expensive to construct directly out of electronic circuits but we can imagine it nevertheless. A machine with C++ or COBOL as its machine language would be complex indeed but could easily be built in today's technology. There is a good reasons, however, for not building such a computer: it would not be cost effective compared to other techniques.

A computer with n levels can be regarded as n different virtual machines, each with a different machine language. We will use the terms "level" and "virtual machine" interchangeably. Only programs written in language LO can be directly carried out by the electronic circuits, without the need for intervening translation or interpretation. Programs written in Ll, L2, ..., Ln must either be interpreted by an interpreter running on a lower level or translated to another language corresponding to a lower level.

A person whose job it is to write programs for the level n virtual machine need not be aware of the underlying interpreters and translators. The machine structure ensures that these programs will somehow be executed. It is of no interest whether they are carried out step by step by an interpreter which, in turn, is also carried out by another interpreter, or whether they are carried out by the electronics. The same result appears in both cases: the programs are executed.

Most programmers using an n‑level machine are only interested in the top level, the one least resembling the machine language at the very bottom. However, people interested in understanding how a computer really works must study all the levels. People interested in designing new computers or designing new levels (i.e., new virtual machines) must also be familiar with levels other than the top one. The concepts and techniques of constructing machines as a series of levels and the details of the levels themselves form the main subject of this book.

[image: image1.png]

1.1.2 Contemporary Multilevel Machines

Most modern computers consist of two or more levels. Machines with as many as six levels even exist, as shown in Fig. 1‑2. Level 0, at the bottom, is the machine's true hardware. Its circuits carry out the machine language programs of level 1. For the sake of completeness, we should mention the existence of yet another level below our level 0. This level, not shown in Fig. 1‑2 because it falls within the realm of electrical engineering (and is thus outside the scope of this book), is called the device level. At this level, the designer sees individual transistors, which are the lowest‑level primitives for computer designers. If one asks how transistors work inside, that gets into solid‑state physics.

[image: image2.png]
At the lowest level that we will study, the digital logic level, the interesting objects are called gates. Although built from analog components, such as transistors, gates can be accurately modeled as digital devices. Each gate has one or more digital inputs (signals representing 0 or 1) and computes as output some simple function of these inputs, such as AND or OR. Each gate is built up of at most a handful of transistors. A small number of gates can be combined to form a 1‑bit memory, which can store a 0 or a 1. The 1‑bit memories can be combined in groups of (for example) 16, 32, or 64 to form registers. Each register can hold a single binary number up to some maximum. Gates can also be combined to form the main computing engine itself. We will examine gates and the digital logic level in detail in Chap. 3.

 The next level up is is the microarchitecture level. At this level we see a collection of (typically) 8 to 32 registers that form a local memory and a circuit called an ALU (Arithmetic Logic Unit) that is capable of performing simple arithmetic operations. The registers are connected to the ALU to form a data path, over which the data flow. The basic operation of the data path consists of selecting one or two registers having the ALU operate on them, for example, adding them together, with the result being stored back in some register.

On some machines the operation of the data path is controlled by a program called a microprogram. On other machines the data path is controlled directly by hardware. In previous editions of this book, we called this level the "microprogramming level," because in the past it was nearly always a software interpreter. Since the data path is now often controlled directly by hardware, we have changed the name to reflect this.

On machines with software control of the data path, the microprogram is an interpreter for the instructions at level 2. It fetches, examines, and executes instructions one by one, using the data path to do so. For example, for an ADD instruction, the instruction would be fetched, its operands located and brought into registers, the sum computed by the ALU, and finally the result routed back to the place it belongs. On a machine with hardwired control of the data path, similar steps would take place, but without an explicit stored program to control the interpretation of the level 2 instructions.

At level 2 we have a level that we will call the Instruction Set Architecture level or (ISA level). Every computer manufacturer publishes a manual for each of the computers it sells, entitled "Machine Language Reference Manual" or "Principles of Operation of the Western Wombat Model 100X Computer" or something similar. These manuals are really about the ISA level not the underlying levels. When they describe the machine's instruction set, they are in fact describing the instructions carried out interpretively by the microprogram or hardware execution circuits. If a computer manufacturer provides two interpreters for one of its machines, interpreting two different ISA levels, it would need to provide two "machine language" reference manuals, one for each interpreter.

The next level is usually a hybrid level. Most of the instructions in its language are also in the ISA level. (There is no reason why an instruction appearing at one level cannot be present at other levels as well.) In addition, there is a set of new instructions, a different memory organization, the ability to run two or more programs concurrently, and various other features. More variation exists between level 3 designs than between those at either level I or level 2.

The new facilities added at level 3 are carried out by an interpreter running at level 2, which, historically, has been called an operating system. Those level 3 instructions identical to level 2's are carried out directly by the microprogram (or hardwired control), not by the operating system. In other words, some of the level 3 instructions are interpreted by the operating system and some of the level 3 instructions are interpreted directly by the microprogram. This is what we mean by "hybrid." We will call this level the operating system machine level.

 There is a fundamental break between levels ~ and 4. The lowest three levels are not designed for use by the average garden‑variety programmer. Instead they are intended primarily for running the interpreters and translators needed to support the higher levels. These interpreters and translators are written by people called systems programmers who specialize in designing and implementing new virtual machines. Levels 4 and above are intended for the applications programmer with a problem to solve.

Another change occurring at level 4 is the method by which the higher levels are supported. Levels 2 and 3 are always interpreted. Levels 4, 5, and above are usually, although not always, supported by translation.

Yet another difference between levels 1, 2, and 3, on the one hand, and levels 4, 5, and higher, on the other, is the nature of the language provided. The machine languages of levels 1, 2, and 3 are numeric. Programs in them consist of long series of numbers, which are fine for machines but bad for people. Starting at level 4, the languages contain words and abbreviations meaningful to people.

Level 4, the assembly language level, is really a symbolic form for one of the underlying languages. This level provides a method for people to write programs for levels 1, 2, and 3 in a form that is not as unpleasant as the virtual machine languages themselves. Programs in assembly language are first translated to level 1, 2, or 3 language and then interpreted by the appropriate virtual or actual machine. The program that performs the translation is called an assembler.

Level 5 usually consists of languages designed to be used by applications programmers with problems to solve. Such languages are often called high‑level languages. Literally hundreds of different ones exist. A few of the better known ones are BASIC, C, C++, Java, LISP, and Prolog. Programs written in these languages are generally translated to level 3 or level 4 by translators known as compilers, although occasionally they are interpreted instead. Programs in Java, for example, are often interpreted.

In some cases, level 5 consists of an interpreter for a specific application domain, such as symbolic mathematics. It provides data and operations for solving problems in this domain in terms people knowledgeable in that domain can understand easily.

In summary, the key thing to remember is that computers are designed as a series of levels, each one built on its predecessors. Each level represents a distinct abstraction, with different objects and operations present. By designing and analyzing computers in this fashion, we are temporarily able to suppress irrelevant detail and thus reduce a complex subject to something easier to understand.

The set of data types, operations, and features of each level is called its architecture. T e architecture deals with those aspects that are visible to the user of that level. Features that the programmer sees, such as how much memory is available, are part of the architecture. Implementation aspects, such as what kind of chip technology is used to implement the memory, are not part of the architecture. The study of how to design those parts of a computer system that are visible to the programmers is called computer architecture. In common practice, computer architecture and computer organization mean essentially the same thing.

1.1.3 Evolution of Multilevel Machines

To provide some perspective on multilevel machines, we will briefly examine their historical development, showing how the number and nature of the levels has evolved over the years. Programs written in a computer's true machine language (level 1) can be directly executed by the computer's electronic circuits (level 0), without any intervening interpreters or translators. These electronic circuits, along with the memory and input/output devices, form the computer's hardware. Hardware consists of tangible objects‑integrated circuits, printed circuit boards, cables, power supplies, memories, and printers‑rather than abstract ideas, algorithms, or Instructions.

Software, in contrast, consists of algorithms (detailed instructions telling how to do something) and their computer representations‑namely, programs Programs can be stored on hard disk, floppy disk, CD‑ROM, or other media but the essence of software is the set of instructions that makes up the programs, not the physical media on which they are recorded.

In the very first computers, the boundary between hardware and software was crystal clear. Over time, however, it has blurred considerably, primarily due to the addition, removal, and merging of levels as computers have evolved. Nowadays, it is often hard to tell them apart. In fact, a central theme of this book is

Hardware and software are logically equivalent.

Any operation performed by software can also be built directly into the hardware, preferably after it is sufficiently well understood. As Karen Panetta Lentz put it: "Hardware is just petrified software." Of course, the reverse is also true: any instruction executed by the hardware can also be simulated in software. The decision to put certain functions in hardware and others in software is based on such factors as cost, speed, reliability, and frequency of expected changes. There are few hard and fast rules to the effect that X must go into the hardware and Y must be programmed explicitly. These decisions change with trends in technology and computer usage.

The Invention of Microprogramming

The first digital computers, back in the 1940s, had only two levels: the ISA level, in which all the programming was done, and the digital logic level, which executed these programs. The digital logic level's circuits were complicated, difficult to understand and build, and unreliable.

In 1951, Maurice Wilkes, a researcher at the University of Cambridge, suggested the idea of designing a three‑level computer in order to drastically simplify the hardware (Wilkes, 1951). This machine was to have a built‑in, unchangeable interpreter (the microprogram), whose function was to execute ISA‑level programs by interpretation. Because the hardware would now only have to execute microprograms, which have a limited instruction set, instead of ISA‑level programs, which have a much larger instruction set, fewer electronic circuits would be needed. Because electronic circuits were then made from vacuum tubes, such a simplification promised to reduce tube count and hence enhance reliability.

A few of these three‑level machines were constructed during the 1950s. More were constructed during the 1960s. By 1970 the idea of having the ISA level be interpreted by a microprogram, instead of directly by the electronics, was dominant.

The Invention of the Operating System

In these early years, most computers were "open shop," which meant that the programmer had to operate the machine personally. Next to each machine was a sign‑up sheet. A programmer wanting to run a program signed up for a block of time, say Wednesday morning 3 to 5 A.M. (many programmers liked to work when it was quiet in the machine room). When the time arrived, the programmer headed for the machine room with a deck of 80‑column punched cards (an early input medium) in one hand and a sharpened pencil in the other. Upon arriving in the computer room, he or she gently nudged the previous programmer toward the door and took over the computer.

If the programmer wanted to run a FORTRAN program, it was necessary to go through the following steps:

1 .
He went over to the cabinet where the program library was kept, took out the big green deck labeled FORTRAN compiler, put it in the card reader, and pushed the start button.

2.
He put her FORTRAN program in the card reader and pushed the continue button. The program was read in.

3.
When the computer stopped, he read her FORTRAN program in a second time. Although some compilers only required one pass over the input, many required two or more. For each pass, a large card deck had to be read in.

4.
Finally, the translation neared completion. The programmer often became nervous near the end because if the compiler found an error in the program, he had to correct it and start the entire process all over again. If there were no errors, the compiler punched out the translated machine language program on cards.

5.
The programmer then put the machine language program in the card reader along with the subroutine library deck and read them both in.

6.
 The program began executing. More often than not it did not work and unexpectedly stopped in the middle. Generally, the programmer fiddled with the console switches and looked at the console lights for a little while. If lucky, he figured out the problem, corrected the error, and went back to the cabinet containing the big green FORTRAN compiler to start all over again. If less fortunate, he made a printout of the contents of memory, called a core dump, and took it home to study.

This procedure, with minor variations, was normal at many computer centers for years. It forced the programmers to learn how to operate the machine and to know what to do when it broke down, which was often. The machine was frequently idle while people were carrying cards around the room or scratching their heads trying to find out why their programs were not working properly.

Around 1960 people tried to reduce the amount of wasted time by automating the operator's job. A program called an operating system was kept in the computer at all times. The programmer provided certain control cards along with the program that were read and carried out by the operating system. Figure 1‑3 shows a sample deck for one of the first widespread operating systems, FMS (FORTRAN Monitor System), on the IBM 709.

The operating system read the *JOB card and used the information on it for accounting purposes. (The asterisk was used to identify control cards, so they would not be confused with program and data cards.) Later, it read the *FORTRAN card, which was an instruction to load the FORTRAN compiler from a magnetic tape. The compiler then read in and compiled the FORTRAN program. When the compiler finished, it returned control back to the operating system, which then read the *DATA card. This was an instruction to execute the translated program, using the cards following the *DATA card as the data.

[image: image3.png]
Although the operating system was designed to automate the operator's job (hence the name), it was also the first step in the development of a new virtual machine. The *FORTRAN card could be viewed as a virtual "compile program" instruction. Similarly, the *DATA card could be regarded as a virtual "execute program" instruction. A level with only two instructions was not much of a level but it was a start in that direction.

In subsequent years, operating systems became more and more sophisticated. New instructions, facilities, and features were added to the ISA level until it began to take on the appearance of a new level. Some of this new level's instructions were identical to the ISA‑level instructions, but others, particularly input/output instructions, were completely different. The new instructions were often known as operating system macros or supervisor calls. The usual term now is system call.

Operating systems developed in other ways as well. The early ones read card decks and printed output on the line printer. This organization was known as a batch system. Usually, there was a wait of several hours between the time a program was submitted and the time the results were ready. Developing software was difficult under those circumstances.

In the early 1960s researchers at Dartmouth College, MIT, and elsewhere developed operating systems that allowed (multiple) programmers to communicate directly with the computer. In these systems, remote terminals were connected to the central computer via telephone lines. The CPU was shared among many users. A programmer could type in a program and get the results typed back almost immediately, in the office, in a garage at home, or wherever the terminal was located. These systems were, and still are, called timesharing systems.

Our interest in operating systems is in those parts that interpret the instructions and features present in level 3 and not present in the ISA level rather than in the timesharing aspects. Although we will not emphasize it, you should keep in mind that operating systems do more than just interpret features added to the ISA level.

The Migration of Functionality to Microcode

Once microprogramming had become common (by 1970), designers realized that they could add new instructions by just extending the microprogram. In other words, they could add "hardware" (new machine instructions) by programming. This revelation led to a virtual explosion in machine instruction sets, as designers competed with one another to produce bigger and better instruction sets. Many of these instructions were not essential in the sense that their effect could be easily achieved by existing instructions, but often they were slightly faster than a sequence of existing instructions. For example, many machines had an instruction INC (INCrement) that added one to a number. Since these machines also had a general ADD instruction, having a special instruction to add I (or to add 720, for that matter) was not necessary. However, the INC was usually a little faster than the ADD, so it got thrown in.

Many other instructions were added to the microprogram using the same reasoning. These often included

1 . Instructions for integer multiplication and division.

2.
Floating‑point arithmetic instructions.

3.
Instructions for calling and returning from procedures.

4.
Instructions for speeding up looping.

5.
Instructions for handling character strings.

Furthermore, once machine designers saw how easy it was to add new instructions, they began looking around for other features to add to their microprograms. A few examples of these additions include

1.
Features to speed up computations involving arrays (indexing and indirect addressing).

2.
Features to permit programs to be moved in memory after they have started running (relocation facilities).

3.
Interrupt systems that signal the computer as soon as an input or output operation is completed.

4.
The ability to suspend one program and start another in a small number of instructions (process switching).

Numerous other features and facilities have been added over the years for as well, usually for speeding up some particular activity.

The Elimination of Microprogramming

Microprograms grew fat during the golden years of microprogramming (1960s and 1970s). The only problem was that they also tended to get slower and slower as they acquired more bulk. Finally, some researchers realized that by eliminating the microprogram, vastly reducing the instruction set, and having the remaining instructions be directly executed (i.e., hardware control of the data path), machines could be speeded up. In a certain sense, computer design had come full circle, back to the way it was before Wilkes invented microprogramming in the first place.

The point of this discussion is to show that the boundary between hardware and software is arbitrary and constantly changing. Today's software may be tomorrow's hardware, and vice versa. Furthermore, the boundaries between the various levels are also fluid. From the programmer's point of view, how an instruction is actually implemented is unimportant (except perhaps for its speed). A person programming at the ISA level can use its multiply instruction as though it were a hardware instruction without having to worry about it, or even be aware of whether it really is a hardware instruction. One person's hardware is another person's software.

