6.5 Understanding the System Context Using a Domain Model 119

.5 Understanding the System Context Using a Domain Model

6.5.1 What Is a Domain Model?

A domain model captures the most important types of objects in the context of the
system. The domain objects represent the “things” that exist or events that transpire
in environment in which the system works [2, 5].

Many of the domain objects or classes (to use more precise terminology) can be
found from a requirements specification or by interviewing domain experts. The
domain classes come in three typical shapes:

m Business objects that represent things that are manipulated in a business, such
as orders, accounts, and contracts.

m Real-world objects and concepts that a system needs to keep track of, such as
enemy aircraft, missiles, and trajectory.

m Events that will or have transpired, such as aircraft arrival, aircraft departure,
and lunch break.

The domain model is described in UML diagrams (particularly in class
diagrams).

These diagrams illustrate to customers, users, reviewers, and other developers the
domain classes and how they are related to one another by association.

W The Domain Classes

Order, Invoice, Item, and Account

The system will use the Internet to send orders, invoices, and payments between
buyers and sellers. The system helps the buyer prepare orders, the seller to evalu-
ate orders and send invoices, and the buyer to validate invoices and effect payment
from the buyer's account to that of the seller.

An order is the request from a buyer to a seller for a number of items. Each item
“occupies a line” in the order. An order has attributes such as date of submission
and delivery address. See the class diagram in Figure 6.3.

An invoice is a request for payment sent from a seller to a buyer in response to
an order for goods or services. An invoice has attributes such as amount, date of
submission, and last date of payment. An invoice may be the request for payment
of several orders.

An invoice is paid by transferring money from the buyer’s account to the seller’s
account. An Account has attributes such as balance and owner. The attribute
owner identifies the person who owns the account.

120 Chapter 6 Requirements Capture: From Vision to Requirements

Order Item

date of submission description
>—
delivery address 1. picture
cost
1.* | payable
Invoice Account
buyer

amount 1 balance
date of submission seller |owner
last date of payment L

FIGURE 6.3 A class diagramina domain model, capturing the most important
concepts in the context of the system.

e ~ UMLNotation . .
Classes (rectangles), attrioutes (text in the half of the class rectangles), :
~ and associations (the lines between the class rectangles). The text at theend.
of an association path explains the role of one class in relation to another, that
is, the role of the association. The multiplicity—the numbers and stars atthe
end of an association path—tells how many objects of the class at this end
are linked to one obiject at the other end. For example, the association con-
necting the classes Invoice and Order in Figure 6.3 has a 1..* multiplicity
adorned to the Order class end. This means that each Invoice object may be
a request for payment of one or more Order objects, as indicated by the

payable association role (Appendix A).

6.5 Understanding the System Context Using a Domain Model 121

6.5.2 Developing a Domain Model

Domain modeling is usually done in workshops by domain analysts, who use UML
and other modeling languages to document the results. To form an effective team,
these workshops should include both domain experts and people who are skilled in
modeling.

The purpose of domain modeling is to understand and describe the most impor-
tant classes within the context of the domain. Modest-sized domains usually require
between 10 and 50 such classes. Larger domains may require many more.

The remaining hundreds of candidate classes that the analysts may elicit for the
domain are kept as definitions in a glossary of terms; otherwise, the domain model
will become too large and will require more effort than is appropriate for this stage of
the process.

Sometimes, such as for very small business domains, it is not necessary to
develop an object model for the domain; instead, a glossary of terms may suffice.

The glossary and domain model help users. customers, developers, and other
stakeholders use a common vocabulary. Common terminology is necessary to share
knowledge with others. Where confusion abounds, engineering is difficult, if not
impossible. And to build a software system of any size, modern engineers must
“merge” the language of all the participants into a consistent one.

Finally, a word of caution regarding domain modeling is in order. It can be very
easy to start modeling the internal parts of a system and not its context [7]. For exam-
ple, some domain objects might have a straightforward representation in the system,
and some domain analysts might in turn fall into the trap of specifying details regard-
ing this representation. In such cases it is very important to keep in mind that the
purpose of domain modeling is to contribute to an understanding of the system’s
context, and thereby also to an understanding of the system’s requirements as they
originate from this context. In other words, domain modeling should contribute to an
understanding of the problem that the system is supposed to solve in relation to its
context. The system’s internal way of solving this problem will be dealt with in the
analysis, design, and implementation workflows (see Chapters 8, 9, and 10).

6.5.3 Use of the Domain Model

The domain classes and the glossary of terms are used when developing the use case
and analysis models. They are used

m When describing the use cases and when designing the user interface, some-
thing which we will return to in Chapter 7.

m To suggest classes internal to the developed system during analysis, some-
thing which we will return to in Chapter 8.

However, there is an even more systematic way to identify use cases and to find
classes inside the system: develop a business model. As we will see, a domain model

